Volver a Guía
Ir al curso
@ariel Hola Ariel! Nooo, si sabés como hacerlo deberías llegar también al mismo resultado, así que está bien también :) Cuando factorizas de esa manera también estás encontrando los ceros/raíces de la función, igual que cuando aplicamos la resolvente ;)
CURSO RELACIONADO
Análisis Matemático 66
2024
CABANA
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 UBA XXI
CÁTEDRA CABANA
1.4.
Resolver las siguientes desigualdades y mostrar su conjunto solución en forma gráfica sobre la recta real.
f) $x^{2}-x-2 \geq 0$
f) $x^{2}-x-2 \geq 0$
Respuesta
Chan! Este item es muuuucho más fácil de resolverlo si ya viste función cuadrática... confiá en mi, si todavía no viste nada nada de función cuadrática, esperá a ver eso y después volvé. Yo te voy a mostrar cómo lo podemos resolver una vez que ya sabemos lo básico de funciones cuadráticas.
Reportar problema
Fijate que para resolver la desigualdad \(x^{2} - x - 2 \geq 0\), necesitamos encontrar los valores de \(x\) para los cuales la función cuadrática está por encima del eje $x$ o justo en él (porque nos dice mayor o igual). Es decir, tenemos que conocer los ceros de nuestra función cuadrática y el conjunto de positividad!
Para buscar las raíces o ceros de la cuadrática igualamos la función a cero...
$x^{2} - x - 2 = 0$
¿Cómo resolvemos esta ecuación? Es una cuadrática igualada a cero, grabatelooooo, con la fórmula resolvente! Si la aplicás, deberías llegar a que las raíces son $x=-1$ y $x=2$
Pensá ahora en la forma de esta parábola... El numerito que acompaña a $x^2$ es positivo, entonces es carita feliz no? Imaginate una parábola con sus raíces en -1 y 2... y es carita feliz... te das cuenta que el conjunto de positividad tiene que ser
\(x \in (-\infty, -1) \cup (2, \infty)\).
Perfecto, si ahora agregamos las raíces, la solución final a la desigualdad \(x^{2} - x - 2 \geq 0\) es el conjunto de todos los valores de \(x\) que están en los intervalos \((-∞, -1]\) y \([2, ∞)\).
ExaComunidad
Iniciá sesión o Registrate para dejar
tu
comentario.
ariel
8 de septiembre 22:49
Factorice por trinimio y me salio igual. No hay problema, no?
Flor
PROFE
9 de septiembre 10:01
0
Responder